home *** CD-ROM | disk | FTP | other *** search
-
-
-
- SSSSSSSSTTTTEEEEVVVVDDDD((((3333SSSS)))) SSSSSSSSTTTTEEEEVVVVDDDD((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- SSTEVD - compute all eigenvalues and, optionally, eigenvectors of a real
- symmetric tridiagonal matrix
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE SSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
- INFO )
-
- CHARACTER JOBZ
-
- INTEGER INFO, LDZ, LIWORK, LWORK, N
-
- INTEGER IWORK( * )
-
- REAL D( * ), E( * ), WORK( * ), Z( LDZ, * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- SSTEVD computes all eigenvalues and, optionally, eigenvectors of a real
- symmetric tridiagonal matrix. If eigenvectors are desired, it uses a
- divide and conquer algorithm.
-
- The divide and conquer algorithm makes very mild assumptions about
- floating point arithmetic. It will work on machines with a guard digit in
- add/subtract, or on those binary machines without guard digits which
- subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could
- conceivably fail on hexadecimal or decimal machines without guard digits,
- but we know of none.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
- = 'V': Compute eigenvalues and eigenvectors.
-
- N (input) INTEGER
- The order of the matrix. N >= 0.
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- SSSSSSSSTTTTEEEEVVVVDDDD((((3333SSSS)))) SSSSSSSSTTTTEEEEVVVVDDDD((((3333SSSS))))
-
-
-
- D (input/output) REAL array, dimension (N)
- On entry, the n diagonal elements of the tridiagonal matrix A.
- On exit, if INFO = 0, the eigenvalues in ascending order.
-
- E (input/output) REAL array, dimension (N)
- On entry, the (n-1) subdiagonal elements of the tridiagonal
- matrix A, stored in elements 1 to N-1 of E; E(N) need not be set,
- but is used by the routine. On exit, the contents of E are
- destroyed.
-
- Z (output) REAL array, dimension (LDZ, N)
- If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- eigenvectors of the matrix A, with the i-th column of Z holding
- the eigenvector associated with D(i). If JOBZ = 'N', then Z is
- not referenced.
-
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
- 'V', LDZ >= max(1,N).
-
- WORK (workspace/output) REAL array,
- dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the
- optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If JOBZ = 'N' or N <= 1 then
- LWORK must be at least 1. If JOBZ = 'V' and N > 1 then LWORK
- must be at least ( 1 + 4*N + N**2 ).
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns this
- value as the first entry of the WORK array, and no error message
- related to LWORK is issued by XERBLA.
-
- IWORK (workspace/output) INTEGER array, dimension (LIWORK)
- On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
-
- LIWORK (input) INTEGER
- The dimension of the array IWORK. If JOBZ = 'N' or N <= 1 then
- LIWORK must be at least 1. If JOBZ = 'V' and N > 1 then LIWORK
- must be at least 3+5*N.
-
- If LIWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the IWORK array, returns this
- value as the first entry of the IWORK array, and no error message
- related to LIWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, the algorithm failed to converge; i off-
- diagonal elements of E did not converge to zero.
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- SSSSSSSSTTTTEEEEVVVVDDDD((((3333SSSS)))) SSSSSSSSTTTTEEEEVVVVDDDD((((3333SSSS))))
-
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-